
The Direct Manipulation Shell: Creating Extensible Display Page Editors 

Michael E. Allen, Michael Christiansen 
SSC Laboratory * 

2550 Beckleymeade Ave. 
Dallas, Texas 75237 

Abstract 
Accelerator controls systems provide parameter display 
pages which allow the operator to monitor and manipu­
late selected control points in the system. Display pages 
are generally implemented as either hand-crafted, purpose­
built programs; or by using a specialized display page lay­
out tool. These two methods of display page development 
exhibit the classic trade-off between functionality vs. ease 
of implementation. In the Direct Manipulation Shell we 
approach the process of developing a display page in a 
manifestly object-oriented manner. This is done by pro­
viding a general framework for interactively instantiating 
and manipulating display objects. 

I. INTRODUCTION 

We are developing a tool, known as the Direct Manipula­
tion Shell which wil! allow the construction of soft­
ware applications in much the same way as modern hard­
ware devices are constructed. That the user selects and 
combines together software components in an 
plug-and-play fashion when their applications 
software. OMS provides an environment in which software 
components are provided a.nd directly manipulated (hence 
Direct Manipulation Shell) the user. 

A programming environment developed through DMS 
contains software components which address the needs of 
a single problem domain, e.g., accelerator parameter page 
development. This can be contrasted to a traditional pro­
gramming environment containing compilers, linkers, edi-

etc., which support no specific domain and 
provide no domain specific support for applieations devel­
opment. Using DMS, the user performing the applications 
programming spends most of his time browsing of 
domain specific components rather than developing algo­
rithms and data structures. It is assumed that this appli­
cations programmer is knowledgeable in the domain sup­
ported by the specific environment, not necessarily in the 
domain of the computer sciences. 

The of OMS is to provide users with a software de-
velopment environment in which they construct solutions 
in problem domains about which they are concerned and 
knowledgeable. These domain experts are provided com­
poneds that are presented and manipulated through terms 
and concepts found in this problem domain. Using the fa­
cilities provided by DMS, programming experts develop 
a set of interrelated software components which can be 

•Operated by the Univernities Research Association, Inc., for the U.S. 
Department of Energy under Contract No. DE-AC02-89ER40486. 

511 

used to construct solutions to problems in this domain. 
This process of constructing a programming environment 
through DMS is similar to the process of constructing an 
expert system [2] using an expert systems development 
shell. When developing an expert system, a team of pro­
grammers and domain experts combine efforts to develop 
a set of rules which address problems in a specific problem 
domain. With DMS, a. team of programming and prob­
lem domain experts construct a set of software components 
which can be accessed and manipulated through DMS. In 
either case the user is provided with an environment which 
can be applied to problem solving with little understanding 
of the underlying computing environment. 

Of course, theses goals are not unique to DMS. Basically, 
OMS provides an interactive, interpreted, object-oriented, 
programming environment. Usually, such environments 
have the following major shortcomings: 

1. performance. 

2. availability of third party, off-the-shelf "components". 

3. performance. 

For an accelerator control application (1) and (3) (and to 
a lesser extent (2)) can be killers. The DMS environment 
is designed t.o specifically address these limitations. This 
is achieved in the current version of the DMS tool via the 
use of a modified Common Lisp interpreter, [lj. 

has incorporate within it an object-oriented lan­
guage constructs which allow classes to be defined and in­
stances of XLisp object to be created. Our modifications 
to XLisp enable the user to interactively create and ma­
nipulate instances of XLisp objects which in turn create 
and manipulate instances of C++ objects. This is much 
more than just a function interface, because the ob­
jects thus created are now managed by the DMS environ­
ment. This means, for example, that much of the memory 
management is taken care of automatically (garbage col­
lection). Additionally, DMS knows about C++ data struc­
tures, so that unmodified C++ code can be linked directly 
into the DMS environment. Additionally, because of the 
object oriented extensions on the Lisp side, one can write 
straight forward Lisp code without continually bothering 
about how data is represented. 

Within DMS one can move freely between the Lisp and 
C++ environments, taking advantage of the best features of 
both. In particular, one may take advantage of the speed 
and availability of C++ class libraries within an interactive 
Lisp programming environment. '\Ve have, for example, 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP03

Object Oriented Programming & Techniques

S14OOP03

511

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



incorporated both the GNU [7) and InterViews (8) class 
libraries into a development environment for user inter­
face development. The process of incorporating, or linking 
in, new C++ classes is discussed in some detail in a later 
section. It is important to note, however, that no modifi­
cations to the C++ code is required. In fact, one does not 
even need access to the source code in order to integrate a 
C++ class library into the DMS environment. 

Another reason for integrating the Lisp programming 
language into the DMS tools is the opportunity to apply 
expert system, logic programming, and other knowledge 
based technologies in the development of domain specific 
development environments. Not only does the DMS tool 
support the interactive construction of software solutions, 
but embedded rules and constraints systems can guide the 
software developer in the correct manipulation and combi­
nation of software components into a needed solution. 

II. THE C++-XLISP INTERFACE 

The connection between the XLisp and C++ program­
ming environments is accomplished by providing an inter­
face between the Lisp and C++ run-time environments. In 
general, a method call on a XLisp object is translated into 
a call on a C++ object's method. This translation is accom­
plished by a C++ function, called the Interface Function, 
which is generated specifically for the purpose of providing 
an interface between the Lisp and C++ environments. 

Each C++ class which is imported into the XLisp envi­
ronment is interfaced to DMS through an XLisp class. An 
XLisp class which imports and makes available a C++ class 
is called an "import class". Each import class duplicates 
the set of methods that the C++ class provides. When 
an instance of an import class is created, the constructor 
method for the import class constructs and makes available 
an instance of its corresponding C++ class. An instance of 
an import class is called an "interface object" and each 
interface object maintains and provides an interface to a 
single instance of a C++ object. 

An Interface Function is created specifically for each 
class/method combination and is responsible for translat­
ing the Lisp arguments provided to the XLisp method call 
into C++ arguments which are passed to the C++ method 
call. The Interface Function also translates the value re­
turned by the C++ method into a Lisp variable which is 
returned as the result of the XLisp method call on the 
interface object. 

When an instance of a XLisp Interface Object is cre­
ated through the interaction of the user with the XLisp 
programming environment, an XLisp constructor method 
calls an "interface function" which creates an instance of 
the imported C++ class. The pointer to this new C++ ob­
ject is returned by the interface function and assigned to 
a pointer instance variable maintained by the interface ob­
ject. This C++ pointer is then used as a target for all future 
interaction which occurs between the interface object and 
the C++ object it maintains. 

Xllsp lnterrace Object 

Methods: 
CFooabcl 

<Bar) 

Instance Variables: 
C0 Polnter 

I FoolnterraceFuncttonO I 
BarlnterraceFunc tlon() 

Co Object 

Methods: 
--< Foo{a, b, c); 

--< Baro; 

lnstMica- Variables: 
1var I, iVar2, ... 

Figure 1: Interface between XLisp import object and C++ 
object. 

The C++ pointer maintained by the interface Object to 
its C++ object instance can be manipulated and passed 
as an argument in other XLisp method calls. Thus, the 
address, or location, of a C++ object can be passed to 
other C++ objects. In this way direct interaction between 
C++ objects can established once references between these 
C++ objects have been passed through their interface ob­
jects. The importance of this direct interaction lies it the 
fact that once established, directly interacting C++ objects 
can execute method calls with the speed of compile code 
in a traditional, statically linked, programming environ­
ment. Solutions to problems (application programs) are 
then composed utilizing C++ objects which have been cre­
ated and manipulated through their Interface Object in­
stances. 

III. ADDING INTERFACES FOR NEW 

C++-CLASSES TO DMS 

Integrating a new C++ class into the DMS image refers 
to the process of integrating the class data structure and 
its methods into the DMS process (or image). This inte­
gration can be accomplished either statically or dynami­
cally. Static integration is implemented by simply linking 
the compiled object code which implements the class meth­
ods, data structures, and interface functions into the DMS 
image at link time. Dynamic integration is accomplished 
using a public domain library called Did [4,3) which pro­
vides the ability to dynamically load and relocate object 
code into an executing image at run-time. * The Interface 
Functions needed for each method provided by an interface 
object are generated automatically using the development 
environment provided by the DMS tool. 

The DMS development environment described in the 
above figure provides the ability to integrate new C++ 
classes into a DMS supported programming environment. 
The user wishing to integrate a new C++ class provides 
a description of the class and its methods in a form very 
similar to the typical C++ header declaration. This de­
scription is parsed for errors and is translated into a XLisp 
class declaration and a set of interface functions for each 
method in the C++ description. 

•Dynamic integration is currently only offered in the Sun OS 
environment. 

512 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP03

S14OOP03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

512 Object Oriented Programming & Techniques



C++ Class Description 

OMS Deve lcpment 
Environment 

• XL 1sp Class Declaratlons 
•Interface Functions Declarations 

Figure 2: Incorporating C++ classes into the DMS envi­
ronment. 

In the case of the statically integrated DMS tool, the 
interface function declarations are compiled using the na­
tive C++ code development tools into an object code for­
mat. This object code is linked with the DMS object 
code, along with the C++ methods to generate the desired 
DMS programming environment. Also generated from the 
C++ class description are a set of XLisp class declara­
tion which implement the import classes described above. 
The._«e XLisp class declarations are loaded into a DMS en­
vironment when the tool is started. 

IV. CONCERNS AND FUTURE DIRECTIONS 

As noted, DMS is currently implemented as an exten­
sion to the XLisp programming environment. DMS runs 
on on a variety of Unix workstations, and requires the X­
·window system to support its user interface. Also inte­
grated with the tool is a text editor which allows the de­
velopment and execution of XLisp programs in a mouse 
driven editing environment. Within the editor the user 
is able to write XLisp source code with such capabilities 
as parenthesis matching, multiple widows, and text select, 
cut, and paste operations supported through the mouse 
interface. XLisp source code can be interactively executed 
directly from within the editor by selecting and evaluating 
the code of interest through the mouse interface. This fea­
ture is similar to Smalltalk's Workspace object, and allows 
work sessions to be saved and restored. 

The primary programming environment to have been 
developed is an X-\Vindow user interface development en­
vironment based on the InterViews [8] C++ class library 
and our extensions to that library, called glistk [6]. Us­
ing this environment the user is able to interactively cre­
ate and exercise user interfaces implemented as Inter Views 
and glistk objects. In addition, glistk's provide an under­
lying inter-object communication mechanism that has also 
been extended into the XLisp environment. Furthermore, 
there are also XLisp PushButtons and other Lisp based 
interactive objects. These Lisp based objects allow the de­
velopment of higher level functionality within the XLisp 

513 

programming environment. In particular, general Lisp ex­
pressions can be executed when these objects are selected. 

There are two main concerns about the current DMS 
environment. The first is that XLisp, while providing 
an object-oriented interface to Lisp, is not standard. We 
would like to move DMS to a CLOS and Common Lisp en­
vironment. This would make accessible the rich and robust 
environments and tools available with commercial Lisp im­
plementations. We are currently evaluating a few different 
options. 

The second concern is actually more serious. Develop­
ing and maintaining a DMS programming environment is 
a reasonably complex process. When several dozen C++ 
classes are to be integrated into an environment, house 
keeping and version control become complex and error 
prone. Further, developing a new environment sometimes 
requires a in-depth understanding of XLisp internals. In 
the current version, integrating a new class involves sev­
eral processing stages which could be combined into a few 
simpler steps, 

This situation could be improved in a couple of ways. 
First, it should be possible to generate import classes and 
interface functions automatically from C++ header files. 
Another future enhancement would be to eliminate the 
need to generate and link Interface Functions for each 
method provided by an interface object. This might be 
accomplished using a byte code interpreter which inter­
prets a set of byte codes describing the types of arguments 
expected for a method call and which uses these codes to 
translate Lisp to C++ arguments and then performs the 
C++ method call. 

References 

[1] D. M. Bentz. XLisp: An object-oriented lisp. version 
2.0. Available as public domain software., 1988. 

[2] F. Hayes-Roth, D. Waterman, and D. Lenat. Build­
ing Expert Systems. Addison-Wesley, Reading, Mas­
sachusetts, 1983. 

[3] W. Wilson Ho. An Approach to Genuine Dynamic 
Linking. Available as Technical Report. 

[4] W. Wilson Ho. Did: A Dynamic Link/Unlink Editor, 
Version 3.2.3. Available as technical report. 

[5] G. L. Steele Jr. Cammon Lisp: The Language. Digital 
Press, Bedford, Massachusetts, 1984. 

[6] M. Kane, C. Saltmarsh, V. Paxson, M. Allen, and 
P. Veals. The G LISTK Manual. Available as inter­
nal technical memorandum. 

[7] D. Lea. The GNU C++ Library. Available from the 
Free Software Foundation. 

[8] M.A. Linton, J. M. Vlissedes, and P.R.Calder. Com­
posing User Interfaces with InterViews. IEEE Com­
puter, 22(2), Feb. 1988. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP03

Object Oriented Programming & Techniques

S14OOP03

513

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


