
OBJECT-ORIENTED PROGRAMMING TECHNIQUES 
FOR THE AGS BOOSTER* 

Joseph F. Skelly 
AGS Department, Brookhaven National Laboratory 

Upton, New York 11973 

Abstract 

The applications software developed for the control system 
of the AGS Booster Project was written in the object-oriented 
language, C + +. At the start of the Booster Project, the 
programming staff of the AGS Controls Section comprised 
some dozen programmer/analysts, all highly fluent in C but 
no~ices in C + +. During the course of this project, nearly the 
entire staff converted to using C + + for a large fraction of 
their assignments. Over 100 C+ + software modules are now 
available both for Booster and general AGS use, of which a 
large fraction are broadly applicable tools. The transition 
from C to C + + from a managerial perspective is discussed 
and an overview is provided of the ways in which object 
classes have been applied in Booster software development. 

Introduction 

At the outset of the Booster Project,[1] management 
decided to promote the use of object-oriented techniques 
among the programming staff. Our hope was to achieve 
improved programming efficiency and greater maintainability 
of code through increased modularity. The C + + language 
was chosen because of its accessibility to a staff fluent in C, 
and beca_use it was well supported on the computing system 
already m place. Whereas prior efforts at in-house self­
education in C+ + had yielded only very limited success, our 
staff now is very comfortable using C + +, and we consider 
that our goals in promoting c+ + have been satisfactorily 
achieved. During the past two years, our programmers have 
accumulated nearly 200 staff-months of experience with 
C + +, and produced some 160 source-code modules totaling 
more than 100,000 lines; of these, more than 80 are tool 
modules which define more than 300 object classes. The 
Booster was commissioned in June of this year; during this 
period our software was exercised vigorously, and software 
performance and user reaction were favorable. The reasons 
for this success will be discussed below. 

. Environment 

The AGS Distributed Control system (AGSDCS) 
comprises a network of approximately 50 Hewlett-Packard/ 

*Work perfonned under the auspices of the U.S. Department of 
Energy. 

Apollo workstation nodes on a Domain token-ring network 
which spans the AGS accelerator complex. Ten workstations 
provide the operator interface at five consoles in the AGS 
Main Control Room. About 15 workstations are used for 
programmer or physicist development nodes, and the 
remainder are used as control system consoles by engineering 
and technician work groups among the accelerator staff, or as 
data-collection servers in the accelerator complex. The 
workstations run a Unix-like operating system and provide a 
high-resolution display, for which an internal Graphics User 
Interface (GUI) standard for the programs has been 
established. 

The AGSDCS is interfaced to some 5800 accelerator 
devices via more than 100 so-called "device-controllers" in 
more than 50 locations. The device-controller layer is 
currently implemented with Intel Single-Board Computers 
(SBCs) in Multibus packaging. Device-controllers are 
connected to so-called "stations" via the GPIB (IEEE-48 8) bus; 
stations are implemented either in Multibus SBCs (the older 
AGS version) or in Apollo workstations (the new Booster 
version). Access by high-level programs to the network of 
accelerator devices is supported by a library of toolkit routines 
which permit a device to be referenced by just its name. The 
library routines resolve the device address in the network by 
reference to descriptor tables constructed from a relational 
database which describes the entire control system. 

Transition to C + + 

A number of factors are discussed here which contributed 
to the successful transition of the staff to C + +. Experience 
with this process suggests that each factor is important, and 
that the absence of any one of them would have had a very 
negative impact on its success. 

Assignment Profile 

Staff members were given independent software assignments 
for the Booster Project, and permitted to develop them 
individually. The opportunity to nurture a new project from 
its inception without undue burden of prior development 
encouraged the staff to apply new techniques. In addition, it 
was recognized early that many of the assignments required 
common tools, and management fostered cooperative efforts 

500 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP01

S14OOP01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

500 Object Oriented Programming & Techniques



among the staff to define and develop generic object-oriented 
tool packages. 

Staff Experience 

The programmers had already mastered the details of the 
control system infrastructure. New staff hired for the Booster 
Project were given adequate time to become familiar with the 
control system before learning C + + and addressing the new 
Booster-specific programming assignments. 

C+ +Lead Programmer 

The staff was seeded with one experienced c+ +programmer 
to serve as in-house consultant and mentor. During the 
succeeding year, the staff members' primary responsibility 
became their Booster assignment, and as they addressed this 
assignment they adopted C + + as their design language. A 
C+ + culture was established within one year, and a class 
library rapidly accumulated which functioned as a peer­
developed resource of programming models. 

Classification of Classes 

The class library was recently examined to acquire a 
snapshot of its contents (which are still expanding). The 
contents have been categorized according to the type of 
services which the classes offer. 

Class Category #Classes 

Operating System Services 14 36 
GUI Services 4 22 
Control System Services 22 60 
Data Acquisition, Display 17 53 
Device Tools 12 28 
Accelerator Tools 16 87 
Accelerator Physics Tools 7 44 

Although the class library contains a large number of classes, 
many of these are intended only for internal use by the tool 
modules; a programmer wishing to use these tools need 
become familiar with only a few classes at a time. 

Class Examples 

Some samples are offered of the classes in each category 
of the class library, along with some methods (function 
members) defined for them, in order to exhibit the ways in 
which these classes are applied. The format in this table is 
similar to the C + + code from which these examples were 
derived: a class-definition line ("class ClassName") is 
followed by a number of lines defining methods for the class 
("ClassName::method"). The formal parameters (arguments) 
for the methods are not displayed, for the sake of simplicity; 
likewise, most of the synt.ax of the C + + language is 
suppressed, although class derivation is exhibited. 

Accelerator Tools - A Special Niche 

An object-oriented approach to design of the "accelerator 
tools" category seems to offer a special opportunity for 
programmers in an accelerator controls environment. It is 
often the case that the architecture of the control system 
imposes constraints on the hardware designers, constraints 
which cause the elements of the accelerator to be artificially 
fragmented into multiple "devices", or "control system 
primitives•. In the AGS control system, the control system 
primitive is called a "logical device". As an example, the 
engineer designing an interface for a multi-wire profile 
monitor or "harp", was obliged to implement the timing 
control as one logical device, the gain control as a second 
logical device, positin control (insert/retract) as a third logical 
device, and acquisition of the profile as a fourth logical 
device. Moreover, gain and timing control were shared 
among a collection of several harps in the same beam line. 
This complexity is by no means unusual, and is a common 
consequence of the necessity to standardize control system 
architecture and to solve difficult accelerator design problems. 

With an object-oriented tool to support program interaction 
with a harp, the complexities resulting from the multi-device 
interface can be hidden inside the class design. The high-level 
programmer can then interact with a single entity-the harp 
object--and function much the same way the physicist does 
when he views the harp as a single component of the 

Table I. Class Samples ~ Operating System Services 

Class SharedMemory 
SharedMemory: :GetLock 
SharedMemory: :ReleaseLock 

Class MbxMessage 
Class ApolloMail : MbxMessage 

ApolloMail:: ServerGet 
Apollo Mail: :Server Put 
ApolloMail:: ClientGet 
Apollo Mail: :ClientPut 

II 
II 
If 

II 

501 

Mailbox Message 
derived class from MbxMessage 
server access to mailbox 

client access to mailbox 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP01

Object Oriented Programming & Techniques

S14OOP01

501

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Table II. Class Samples - GUI Services 

Class PopupMessage : GenericPopup 
PopupMessage: :display 
PopupMessage: :display_ mono 
PopupMessage: :display_ ok 
PopupMessage: :ask _yn 

Class PopuMenu : GenericPopup 
PopupMenu: :getchoice 
PopupMenu: :getchoices 

II 
/I 
II 
11 
11 
/I 
11 
II 

derived class from Generic Popup 
display in proportional font 
display in monospaced font 
display and await confirmation 
ask question, get yes/no reply 
derived class from Generic Popup 
get a single choice 
get multiple choices 

Table III. Class Samples - Control System Services 

Class Alarm 
Alarm::Log 
Alarm: :DeLog 
Alarm:: Priority 

Class Sid : Alarm 
Class Controller : Alarm 

II 
II 

II 
II 

Log in database 
DeLog from database 

alarm for Sid (Simple Logical Device) 
alarm for Controller 

Table IV. Class Samples - Data Acquisition. Display 

Class SldRequest : DataRequest // derived class from DataRequest 
This class is not exported to the public; it is used by DataCollector 

Class DataCollector 
D ataCollector:: settimeout 
DataCollector: :setup 
DataCollector: :get 
Datacollector:: getimmediate 
Datacollector: :getsynchronized 

Class GraphMonitor : Monitor 
GraphMonitor:resize 
GraphMonitor:: title 
GraphMonitor: :writelabel 
GraphMonitor: :writecycle 
GraphMonitor: :hardcopy 

11 
11 
11 

11 
II 

II 

set timeout period 
set up list 
request data, wait until it arrives 

resize the graph 
display routines 

hardcopy to printer 

Table V. Class Samples - Device Tools 

Class FunctionGenerator 
FunctionGenerator::menu edit 
FunctionGenerator: :load 
FunctionGenerator:: readback 
FunctionGenerator::set cld names 
Function Generator: :set default value - -
FunctionGenerator: :set start 
FunctionGenerator:: set end 
Function Generator:: set_ timing_ cld _names 
Function Generator: :set tolerance 

502 

II 
/I 
II 
II 

edit function 
load it to devices 
read the devices 
names of complex-logical-devices 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP01

S14OOP01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

502 Object Oriented Programming & Techniques



Table VI. Class Samples - Accelerator Tools 

Class Instrument 
Instrument: :calibrate 
Instrument: :acquire_ data 
Instrument: :display_ data 
Instrument: :save_ data 
Instrument: :read_ data 

Class HARP : Instrument 
HARP::insert 
HARP::retract 

Class BPM : Instrument 
Class XF : Instrument 
Class MagnetCalibration 

MagnetCalibration::ReadCalibrationDataFile 
MagnetCalibration: :Interpc>late 
MagnetCalibration:: Readival ues 
MagnetCalibration:: ReadBvalues 

Class Transient Recorder 
T ransientRecorder: :GetLiveReadback 
T ransientRecorder:: SaveLiveReadback 
T ransientRecorder:: GetSavedReadback 
TransientRecorder: :Display Read back 

II 

II 
II 

multi-wire profile monitor 

Booster Position Monitor 
Transformer 

Table VIL Class Samples - Accelerator Physics Tools 

Class ManualHarmonicsCorrector : OrbitCorrector 
ManualHarmonicsCorredor: :set harmonic 
ManualHarmonicsCorrector: :set_pue _display 
ManuaIHarmonicsCorrector: :display_ setpoint_ hannonics 
ManualHarmonicsCorrector: :display_ readback _harmonics 
ManualHannonicsCorrector::increment coefficient 
ManualHannonicsCorrector: :execute correction 

Class BoosterOrbitBump 
BoosterOrbitBump: :magnet_ device _list 
BoosterOrbitBump: :pue _device _list 
BoosterOrbitBump: :what_ bump_ order 
BoosterOrbitBump: :what_ bump_ type 
BoosterOrbitBump:: magnet_ read backs 
BoosterOrbitBump:: magnet_ measurements 

Class TuneModel 
TuneModel:: WriteTunelntoSetpoints 
TuneModel: :ReadSetpointslnto Tune 
Tune Model: :StartMad 
TuneModel: :TestMadDone 
TuneModel: :GetTwissAtElement 
Tune Model:: DisplayTwissAtElement 
TuneModel: :DrawBeamLine 
TuneModel: :DrawEnvelope 
TuneModel::DrawAperture 
TuneModel: :DrawPhaseEllipseAtEiement 

503 

II 
II 
II 

11 
II 
I I 
I I 
I I 

Send setpoints to devices 
Read setpoints from devices 
Run modeling program MAD 

Get Twiss params from model 
Popup Twiss param display 
Iconic display of beam line 
Draw beam envelope 
Overlay magnet apertures 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP01

Object Oriented Programming & Techniques

S14OOP01

503

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



accelerator. This opportunity for class design to offer a clean 
interface to accelerator components is characteristic of these 
accelerator tools. With proper class design, a high-level 
program can be coded to read as cleanly as the designer's 
statement of the program function. 

Acknowledgments 

The work discussed here was developed over the last two 
years by the entire staff of the Controls Section of the AGS; 
their contributions made this report possible, and their 
cooperation made the work a pleasure. 

Reference 

1. W.T. Weng, Construction and Early Commissioning 
Results of the AGS Booster, 1991 Particle Accelerator 
Conference (in press). 

504 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S14OOP01

S14OOP01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

504 Object Oriented Programming & Techniques


