
Overview of the Next Generation of Fennilabl Collider Software 

Brian HENDRICKS, Robert JOSHEL 
Fermilab, P.O. Box 500, Batavia, Il... 60510, USA 

Abstract 

Fermilabl is entering an era of operating a more complex 
collider facility. In addition, new operator workstations are 
available that have increased capabilities. The task of 
providing updated software in this new environment 
precipitated a project called Colliding Beam Software (CBS). 
It was soon evident that a new approach was needed for 
developing console software. Hence CBS, although a 
common acronym, is too narrow a description. A new 
generation of the application program subroutine library has 
been created to enhance the existing programming environment 
with a set of value added tools. Several key Collider 
applications were written that exploit CBS tools. This paper 
will discuss the new tools and the underlying change in 
methodology in application program development for 
accelerator control at Fennilab. 

I. MOTIVATION 

Digital V AXscations running X-windows under VMS have 
replaced the PDP-I ls formerly used to control the accelerators. 
This more powerful platform coupled with the demands of 
more complicated Collider operation led us to move from an 
approach of single application-per-need to using fewer 
applications that draw on a large toolbox of resources. 
Application programs are now viewed as hooks into a pool of 
integrated tools. At the same time we must maintain 
compatibility, while encouraging migration to new tools, for 
the existing application programs which number in Lhe 
hundreds. This is done by providing calling sequences which 
are not too divergenL from the existing ones. The new console 
platform also opened the door for the use of C as an 
application programming language. Calling sequences are 
often provided both in call-by-reference for the FORTRAN 
users and call-by-value for the C users. 

1 Operated by Universities Research Association for the 
Department of Energy 

II. OVERVIEW 

AU the new tools are layered on top of the older lower-level 
routines. These subroutines reside in a shareable image. This 
allows easy growth of a large number of routines without 
affecting the application programmer. This was necessary so 
that application development could be done in parallel with the 
maturation of the CBS environment. The tools handle file 
access, data acquisition, graphics screen management, window 
management, inter-program communication and error logging 
facilities. These utilities also provide their own logging and 
statistics that are viewable by the user during program 
execution. Tools that access centralized facilities, such as 
reading a database, cache infonnation to reduce the load on the 
centralized processes and the network. Any of the tools with a 
visual interface follow standards. This provides a consistent 
user presentation to the operators. This is a more effective 
way to enforce user-standards, rather than administrative 
dependenL approaches that have failed in the past. 

ill. DATA ACQUISIDON 

The first major component in the CBS utilities involves 
input and output to accelerator hardware as well as reading 
database information concerning that hardware. This involves 
reading, setting, controlling, and scaling values as well as 
handling alarms and miscellaneous device attributes. The 
previously available interface routines required separate requests 
for real-time raw data as well as stored data from the database 
in order to read or set data in engineering units. This required 
seven low level function calls to retrieve or set a single value 
in engineering units. In addition to the function calls, 
additional code was required to perform such necessary tasks as 
retrying data retrieval until the data is actually received. All of 
this functionality has been replaced by a single, simple 
function call. For lists of devices the procedure is only 
slightly more complex in that there is a function to build the 
list of devices and a second function to read or set the lisL 

The database infonnation for scaling and necessary interface 
co front end software is cached locally. This reduces redundant 
database access and network traffic. The data acquistion 
routines perform the access and caching such that it is 

243 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA01

System Architecture

S06SA01

243

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



transparent to the application programmer. The cached 
information exists for the life of the program run. The 
database is updated so infrequently that stale cached data is not 
a problem. 

The programmer and end user can peek at the data 
acquisition activity through an application that polls embedded 
statistics modules in the data acquisition routines. This peeker 
program runs on the console concurrently with the program to 
be analyzed. The peeker will display counts of function calls 
and errors. It will also show the number of devices and lists of 
devices being read and set as well as the frequency of retrievals. 
Additionally, timing statistics are shown for the data accesses 
being performed. 

IV. FILE MANAGEMENT 

There is a large group of applications that use shared 
read/write access files. A set of routines was created to help 
the programmer manage opening, reading, writing, and closing 
files in a simple, convenient fashion. As with the data 
acquisition routines, file operations were simplified by 
reducing the number of function calls required to accomplish 
them. A file peeker program was written that is similar to the 
data acquisition peeker. It displays numbers of function calls 
and errors. It also displays which file and record was last read 
and last written and any error associated with the access. In 
addition, timing information is displayed for communications 
with the central file server process. 

V. SCREEN MANAGEMENT 

The VAX console environment provides three X windows 
for each application program. These windows are managed by 
two manager processes that perform all the direct X protocol. 
This was done for compatibility with existing applications. 
The main window permits only character cell access. The 
other two windows allow pixel addressing and are used 
primarily for plotting. Screen management facilities were 
created for each of these types of windows. 

The previous interface routines for the alphanumeric 
window provided little in the way of managing subwindows. 
There were window create and delete routines which simply 
saved and restored blocks of text on the screen. Anything 
beyond that was handled directly by the application program. 
This led to crowded and confusing displays and a myriad of 
user interfaces as programmers grappled with the problem of 
displaying a great deal of information in a limited space. 

The new routines support input and output to multiple 
tiled or overlapping windows. Input and output is clipped to 
the window being addressed. In the case of overlapping 
windows, text written to an occluded character cell is saved and 
is refreshed when and if that character cell becomes exposed. 

These windows may be moved or resized by the user and/or 
under the control of the application program. Routines were 
also created to make it simple for existing nonwindowed 
applications to make use of the new windowed routines. In 
the future this transition may be made seamless by modifying 
the underlying 1/0 routines. 

Support of windows with vertical scrolling capability was 
provided to release the application programmer from the limits 
of the size of the alphanumeric window. Routines exist to 
create and manage a scroll bar and draggable indicator requiring 
no support code from the application program. Lines scrolled 
out of a window are buffered, freeing the application from 
needing to remember scrolled text. 

In addition to the basic window support, higher level screen 
management tools have been added. Menu and menu bar 
routines, numeric and textual input dialog boxes, logical 
dialogs, and message windows have been provided. There are 
also utilities to create and manage logical switches as well as 
to handle highlighting of text regions. 

Since the pixel addressable windows are used primarily for 
plotting, a suite of plotting interface routines were created. 
The routines allow the programmer to define a plotting 
window in terms of fractions of the background window. After 
the region is defined, the scaling function and scaling limits 
can be selected for both axes. Plot labelling and plotting 
attributes can also be defined. An application program was 
also created to allow the user to enter window definition 
parameters and view the resultant window interactively. Once 
the desired window is constructed, the program can be 
instructed to generate the source code to create the plot window 
displayed. Additional routines have also been created to save 
plotted data and then to perform statistical and fitting 
operations on the saved data. 

VI. PROGRAM TAPE RECORDING 

One of the primary applications which had to be created for 
the operation of the Collider was the Colliding Beams 
Sequencer. This program carries out all of the steps to load 
the Collider with particles and bring them into collision. 
Some of these steps are simple and are contained within the 
sequencer, but some are more complicated and require the 
sequencer to invoke other application programs to perform the 
task. Modification of applications to run under sequencer 
control in the past has often been complicated and time 
consuming. It was felt that a more flexible means was needed 
for running programs under the control of another program. It 
was also important to have a method which would allow for 
easy modification. The facility implemented was a software 
tape recording system. A user enters the desired program in a 
special recording mode and then proceeds to perform the desired 
task manually. All the steps are recorded automatically in a 
file and are assigned a unique file name. The file can then be 

244 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA01

S06SA01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

244 System Architecture



niggered by the sequencer (or the application itself), and the 
application program will perform the same steps originally 
carried out by the operator. 

VII. ERROR HANDLING/LOOGING 

Checking and reporting error conditions is one of the most 
important needs for application programs used for accelerator 
control. Operators need to know if settings and readings of 
devices are successful. In addition, it is useful to be able to 
reconstruct events that have occurred. The error handling 
routines check error codes, expand them to give text 
descriptions, and save errors encountered during execution of 
the program. Logging to circular log files can be done 
automatically by the error display functions. A program user 
can examine the log history in a scrollable window with many 
different text filter and search modes. The programmer can 
choose to incorporate a separate log for each instance of the 
program or a single log so that all ·uses of a program are 
shown in one log. Separate programs working together can 
also share a single log with time-ordered entries maintained by 
the logging utility. 

VIll. INTERPROORAM COMMUNICATION 

To support the CBS utilities peeking activities and the 
Colliding Beam Sequencer communication, a set of 
interprogram communication routines were created. These use 
VMS mailboxes to allow queues of AST deliverable messages 
between indpendent processes. One simply creates a mailbox 
with an optional AST address and then sends or receives 
messages from that box. Programmers can now create 
program suites that can work independently or communicate 
directly with each other. The program used to smooth the 
Tevatron orbit will, if needing a lattice, start a program to 
generate the lattice. In turn it can then poll for the results. 
This allows large amounts of data to flow between cooperating 
programs at a high rate. 

JX. UTILITIES 

One of the CBS tools that demonstrates the integration of 
all the utilities is the Utilities Window. Through a menu 
driven interface the user can make screen copies, start plotting 
packages, invoke log displays and set timeouts for data 
acquisition and file accesses. The user can also interact with 
the error reporting buffer by clearing or viewing past 
messages. A window that allows display, reading and setting 
of accelerator parameters is also available. This parameter 
window is customized by the user for use with a particular 
program. 

X. CONCLUSIONS 

The results of recent accelerator studies indicate that the 
CBS approach has been successful thus far. The sequencer, 
orbit smoothing program, and the Tevauon ramp calculation 
and loading programs have been used successfully and have 
been well received by the user community. The consistency in 
user interfaces has allowed users to learn to use these 
complicated programs in a short period of time. In addition, 
programs have been developed using the CBS tools to create 
other applications not directly related to collider operation. 
Inexperienced programmers have b_een able to construct 
involved applications not only successfully, but also in short 
periods of time. The Collider applications have also been able 
to be extensively modified in response to user needs in a short 
period of time with little debugging. 

The work continues on this project. There are many more 
topics to be addressed such as better handling of the data 
associated with the accelerator clock system and complicated 
table devices as well as context sensitive help. Ultimately, the 
goal is to bring all of this under the umbrella of a resource 
editor or code generation system to allow for even more rapid 
and error-free creation of accelerator applications. 

XI. REFERENCES 

[l] Cahill, K.J. and Smedinghoff, J.G. (1989). Converting the 
Fermilab Accelerator Control Consoles to X-Window 
Workstations, Proceedings of the International Conference 
on Accelerator and Large Experimental Physics Control 
Systems, pp. 442-445 

[2] Cahill, K.J. and Smedinghoff, J.G. (1991). Exploiting lhe X­
Window Environment to Expand the Number, Reach, and 
Usefulness of Fermilab Accelerator Control Consoles, lhese 
proceedings 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S06SA01

System Architecture

S06SA01

245

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


